<option id="gucqf"></option>
<noframes id="gucqf"><noframes id="gucqf"><noframes id="gucqf">
<s id="gucqf"></s>
<option id="gucqf"><noframes id="gucqf">
<noframes id="gucqf"><noframes id="gucqf"><noframes id="gucqf"><meter id="gucqf"><menu id="gucqf"></menu></meter>
<noframes id="gucqf"><noframes id="gucqf">
<noframes id="gucqf">
<s id="gucqf"><ins id="gucqf"></ins></s>
<noframes id="gucqf">

2017考研數學概率:必備9大解題思路

2023考研備考資料包限時領取中......

您只需要填寫姓名和電話即可免費領取個人專屬備考資料包一份!

考研數學復習關鍵的就是要把握解題思路和數學公式,有了這兩樣,換湯不換藥,題目多變大家也可以應對了,下面新東方在線總結分享概率部分九大解題思路,大家都get了嗎?

1.如果要求的是若干事件中“至少”有一個發生的概率,則馬上聯想到概率加法公式;當事件組相互獨立時,用對立事件的概率公式。

2.若給出的試驗可分解成(0-1)的n重獨立重復試驗,則馬上聯想到Bernoulli試驗,及其概率計算公式。

3.若某事件是伴隨著一個完備事件組的發生而發生,則馬上聯想到該事件的發生概率是用全概率公式計算。關鍵:尋找完備事件組。

4.若題設中給出隨機變量X~N則馬上聯想到標準化X~N(0,1)來處理有關問題。

5.求二維隨機變量(X,Y)的邊緣分布密度的問題,應該馬上聯想到先畫出使聯合分布密度的區域,然后定出X的變化區間,再在該區間內畫一條//y軸的直線,先與區域邊界相交的為y的下限,后者為上限,而Y的求法類似。

6.欲求二維隨機變量(X,Y)滿足條件Y≥g(X)或(Y≤g(X))的概率,應該馬上聯想到二重積分的計算,其積分域D是由聯合密度的平面區域及滿足Y≥g(X)或(Y≤g(X))的區域的公共部分。

7.涉及n次試驗某事件發生的次數X的數字特征的問題,馬上要聯想到對X作(0-1)分解。

8.凡求解各概率分布已知的若干個獨立隨機變量組成的系統滿足某種關系的概率(或已知概率求隨機變量個數)的問題,馬上聯想到用中心極限定理處理。

9.若為總體X的一組簡單隨機樣本,則凡是涉及到統計量的分布問題,一般聯想到用分布,t分布和F分布的定義進行討論。

【版權與免責聲明】本站所提供的內容除非來源注明研線網,否則內容均為網絡轉載及整理,并不代表本站贊同其觀點和對其真實性負責。文章由本站編輯整理發出,僅供個人交流學習使用。如本站稿件涉及版權等問題,請聯系本站管理員予以更改或刪除。

責任編輯:superadmin

用考研政治刷題
輕松掌握政治考點

X
免费一级特黄日韩大片